[1]Huss J. M .£¬Kelly D . P. . Nuclear receptor signaling and cardiac energetics . Circulation Research, 2004, 95(6):568-78 .
[2]Chilton R .J. . Pathophysiology of coronary heart disease: a brief review. J Am Osteopath Assoc, 2004,104(9 Suppl 7):S5-8 .
[3]David J. G .£¬David, E . M . Metabolomics in coronary heart disease . Heart . Metab. (2012) 55:8 ? 12 .
[4]Gorenoi V, Sch?nermark M . P., Hagen A . CT coronary angiography vs . invasive coronary angiography in CHD . GMS Health Technol Assess, 2012, 8:Doc02 .
[5]Khan M£¬Cummings K .W.£¬Gutierrez F. R .£¬et al . Contraindications and side e?ects of commonly used medications in coronary CT angiography. Int J Cardiovasc Imaging, 2011, 27(3):441-9 .
[6]Fernandez C£¬Sandin M£¬Sampaio J. L .£¬et al . Plasma lipid composition and risk of developing cardio- vascular disease . PLoS One, 2013, 8(8):e71846 .
[7]Lauber C, Gerl MJ, Klose C, et al . Lipidomic risk scores are independent of polygenic risk scores and can predict incidence of diabetes and cardiovascular disease in a large population cohort . PLoS Biol, 2022,20(3):e3001561 .
[8]Zira A . N .£¬Theocharis S . E .£¬Mitropoulos D£¬et al . 1H NMR metabonomic analysis in renal cell carcinoma: a possible diagnostic tool . J Proteome Res, 2010, 9(8):4038-44 .
[9]Gri?ths W.J.£¬Koal T£¬Wang Y£¬et al . Targeted metabolomics for biomarker discovery. Angew Chem Int
Ed Engl, 2010, 49(32):5426-45 .
[10]Rajili? -Stojanovi? M, de Vos WM . The ?rst 1000 cultured species of the human gastrointestinal micro- biota[J] . FEMS Microbiol Rev, 2014, 38:996- 1047 .
[11]Beaulaurier J, Schadt EE, Fang G . Deciphering bacterial epigenomes using modern sequencing technologies . Nat Rev Genet, 2019, 20(3):157- 172 .
[12]Arumugam M, Raes J, Pelletier E, et al . Enterotypes of the human gut microbiome . Nature, 2011, 473:174-80 .
[13]Qin J, Li R, Raes J, et al . A human gut microbial gene catalogue established by metagenomic sequenc- ing . Nature, 2010, 464:59-65 .
[14]Ley RE, Peterson DA, Gordon JI . Ecological and evolutionary forces shaping microbial diversity in the human intestine . Cell, 2006, 24:837-848 .
[15]Qin J, Li Y, Cai Z, et al . A metagenome-wide association study of gut microbiota in type 2 diabetes . Nature, 2012, 490:55-60 .
[16]Tremaroli V, B?ckhed F. Functional interactions between the gut microbiota and host metabolism . Nature, 2012, 489:242-249 .
[17]Wang W, Chen L, Zhou R, et al . Increased proportions of Bi?dobacterium and the Lactobacillus group and loss of butyrate- producing bacteria in in?ammatory bowel disease . J Clin Microbiol, 2014, 52:398-406 .
[18]Wang Z£¬Klipfell E£¬Bennett B .J.£¬et al . Gut ?ora metabolism of phosphatidylcholine promotes cardio- vascular disease . Nature, 2011, 472(7341):57-63 .
[19]Koeth R .A .£¬Wang Z£¬Levison B .S .£¬et al . Intestinal microbiota metabolism of L-carnitione, mutrient in red meat, promotes atherosclerosis . Nat Med, 2013, 19(5):576-85 .
[20]Wang M, Wang Z, Lee Y, et al . . Dietary Meat, Trimethylamine N-Oxide- Related Metabolites, and Incident Cardiovascular Disease Among Older Adults: The Cardiovascular Health Study. Arterioscler Thromb Vasc Biol, 2022, 42(9):e273-e288 .
[21]Wang Z, Roberts AB, Bu?a JA, et al . Non- lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis . Cell, 2015, 163(7):1585-95 .
[22]Roberts AB, Gu X, Bu?a JA, et al . Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential . Nat Med, 2018, 24(9):1407- 1417 .
[23]Feng Q, Liu Z, Zhong S, et al . Integrated metabolomics and metagenomics analysis of plasma and urine identi?ed microbial metabolites associated with coronary heart disease . Sci Rep, 2016, 6:22525 .
[24]Chen L, Ishigami T, Nakashima-Sasaki R, et al . Commensal microbe-speci?c activation of B2 cell subsets contributes to atherosclerosis development independently of lipid metabolism . EBioMedicine, 2016, 13:237-247 .
[25]Nemet I, Saha PP, Gupta N, et al . A Cardiovascular Disease- Linked Gut Microbial Metabolite Acts via Adrenergic Receptors . Cell, 2020, 180(5):862-877 .e22 .